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TEMPERATURE DISTRIBUTION IN FLOWING FILMS

E. G. Vorontsov and O, M. Yakhno UDC 532.54

The analogy between momentum trangport in a turbulent flow and heat transfer is used to discuss the
temperature distribution in a flowing film; the film flowing under gravitation is considered as consisting of
three zones: a laminar sublayer of thickness §; with a linear velocity distribution, a transition zone, and a
turbulent one. '

The temperature distribution incorporates the effects from the energy dissipation in the laminar sub-
layer (0 = y = §;), and this can be derived from the equation
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The boundary conditions in that case take the form

iy, x) =1 for x =0, (initial section)
t(y, x) =9, (x) for y = 0, (at wall)
£y, x) = @,(x) for y=8,, (at boundary is laminar

It is assumed that there is no temperature discontinuity at the tube wall, in which case the following
solution to (1) is obtained: '
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If we assume that the temperature of the liquid is ty at y = 6,, while itis t = tgaty = 6, + dg, with ¢
= tgas at the surface of the film (y = d), then we can [1] put as follows:

for the transitional region
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From (2)-{4) we get the overall temperature difference:
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This expression incorporates the temperature difference in the transitional zone (first term) and in the tur-
bulent region; this enables one to refine the previous method of caleulation [2] and to determine At analyti-
cally for the transition region if the value of 6 is known, which in the general case is

NOTATION
a=Mcpp is the molecular heat-transport coefficient;
cp is the specific heat of the liquid at the average temperature;
e is the liquid density;
g is the acceleration due to gravity;
t is the local temperature;
Wy is the longitudinal velocity component;
xandy are the coordinates; ;
ty is the liquid temperature at the boundary of the laminar sublayer;
tt is the temperature.of the liquid at the boundary between the transitional and turbulent zones;

is the temperature of the wall;
8¢, 0, and 6 are the thicknesses of the laminar sublayer, transitional region, and film as a whole, re-

spectively;
Pe is the Péclet number;

is the kinematic viscosity;
7 is the dynamic viscosity.
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FRACTIONAL-STEP METHOD IN NUMERICAL CALCULATION
OF NONSTATIONARY PARAMETER DISTRIBUTIONS IN
HETEROGENEOUS CHEMICAL PLANT

V. V., Yusifov : UDC 536.24.02

The fractional-step method has been used in numerical calculation of nonstationary parameter dis-
tributions (component concentrations and temperatures in a reaction mixture and at the surface of 2 cataly-
st, flux speed and density, pressure in a layer), as well as processes involving variable physical factors
(heat- and mass-transfer factors, diffusion, thermal conduction, viscosity, layer resistance and specific
heat), together with kinetic quantities (velocity, heat of reaction, and reaction-rate constants), all of which
are described by the following systems of equations:

—c%— (MyY) =Ky (S—Y)+H;m 769— (MU) = (L -+ K)U -+ K, V; (1), (2)

_‘;% by divG; divP =kGr;  G=po 0Sr <1, O<x<l, 0<0<0) (3), @
subject to the following boundary conditions:
e HW_
a)at 1= a o 7

byat 8=0 U, =U,;
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Fig. 1. Distributions of concentrations for CO (c,), CO,
(cy), for the first layer of catalyst; 1) t =3 min; 2) 6;
3) 12; 4) 14; 5) 17 min; solid line for the gas, broken
line for the catalyst surface.
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The operator L is replaced by the difference operator A; the resulting equation is separated, and (2)
is solved by the predictor-corrector method to give the following difference equations:
- L L L 1
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The system (6) is solved via gpecial algorithms.

The Crank—Nicholson scheme is first applied to (3); the finite-difference scheme using fractional
steps is then applied to the equation, uging (3) with 6 = 0, and also (4) and additions d) and e) of system 5,
which define o and G with the corresponding subscripts.

An example is given of a calculation of an industrial process for carbon monoxide conversion; gome
resgults are given in Fig. 1.

NOTATION

z and! are the coordinates;

t is the time;

Chpm=1,...,9), X are the concentrations of component m in the flow and at the surface of the
catalyst;

Ty and Ty, are the flow temperature at the surface of the catalyst and temperature of the
cooling agent; -

4 is the linear flow speed;

P, 0, are the densities of flow and catalyst bed;

P is the pressure in layer;
Dy 20d Dy are the effective diffusion coefficients for component m (r and m, radial and
longitudinal directions);
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Ars Ay né,, Ny are the effective thermal conductivity and viscosity;

¢y and ¢y are the specific heats of reaction mixture and catalyst;

Qym is the mass-transfer coefficient for component m;

k, and k. are the heat-transfer coefficientsfor the flow—catalyst and bed—wall cases or
vice versa; _ )

Acy and e are the bed resistance factor and porosity;

E . is the unit matrix;

Ry and Qy ’ are the reaction rate and heat of reaction:

My, is the molecular weight of component m;

Vm, k ‘ is the stoichiometric factor for component m in reaction k;

T is the increment in 6; )

Ay Ay are the finite~difference operators to approximate L, and L,, respectively:

1 ;
L=Li+ Ly L= - div(H,grad,); L, = e div (A, grad,) L bdiv(By);
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Dep. 2763-74, September 7, 1974.
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DIRECTIONAL CRACKING OF GLASS BY A COy-
LASER BEAM
V. G. Andreev UDC 536.3

Experiments are reported on the effect of focussed CO,~laser radiation on rotating glass tubes; a uni-
form ring crack is produced after a certain period, which breaks the tube into two parts.

The effect is explained via a theoretical discussion of the interaction of the beam with the glass he-
low the phase-transition point. The thermal-conduction problem is solved for such a tube exposed toa COy
lager around a ring of finite height, with the initial and boundary conditions given in general form. Particu-
lar attention is given to a tube everywhere at the same initial temperature and with no internal cooling,and
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a simple expression is derived for the temperature, with graphs illustrating the distribution as a function
of time in the median plane at the internal and external surfaces. A quasistationary temperature distribu-
tion over the thickness is established within about 1 gec.

The heating produces thermoelastic and bending stresses; the temperature distribution gives expres-
sions for the thermoelastic stresses in the median plane and the bending stresses in the axial direction.
The thermoelastic stresses are found to be much larger than the bending ones. Graphs are presented for
the thermoelastic stress digtribution in the radial coordinate, and a comparison is made with the yield
point of the material. It is found that a glass tube breaks as a ring crack, and this arises on the inner sur-
face in response to circumferential tensile stress, and spreads to the outer wall in response to the axial
tensile stresses.

Dep. 2764-74, September 23, 1974.
Original article submitted December 10, 1973.

DETERMINATION OF THE ADIABATIC INDICES OF REAL
GASES AT HIGH PRESSURE
I. ADIABATIC INDICES OF AMMONIA

A. M. Rozen, Ya. S. Teplitskii, UDC 536.711
E. A. Tgsukerman, and V. A. Tapkhaeyv

As is known, upon an increase in pressuré the properties of gases differ considerably from the prop-
erties of an ideal gas, i.e., it becomes impossible to ugse equations of the thermodynamics of ideal gases for
" calculations of processes of expansion and compression.

A method of deviation coefficients is proposed in [1] and the fundamental thermodynamic processes
for real gases are analyzed on its basis. Some data are also presented on the values of the adiabatic in-
dices for several real gases (two adiabatic indices are introduced, the temperature index % and the volu-
metric index Ky, and the two do not coincide wi_th respect to CP/ Cy). The present report isdevoted to
ammonia. The method of deviation coefficients was used for the calculations. Remember that deviation
coefficients are the name for the ratios of the P—V— T derivatives of a real and an ideal gas:

av ov P [ oV
”P=<79F)p/( o ,)pz F(EF}P’ 1
[ oV v P (v
Hr= (35)7/("57’2—)1 T RT (E;)T ’ ()
{ oP oP T [P i
= (‘éﬂv/ (?) VoD P ('5?% ~ur &)

The coefficient of compressibility Z = PV/RT is also a deviation coefficient. Using the method of devia-
tion coefficients one can show [1] that for a real gas the adiabatic temperature index is

Cp Cp
Cp—ARpp — Cvp’

U =

4)

where CViB is the heat capacity of the process at a constant ideal volume; the adiabatic volumetric index is
' ' CpZ Cp

Ky = -,
7 Cynp  CyKrr )
where Ky =—P/V@V/8P) .
An adiabatic process is then described by the equations
i = :
Ty/Ty=(Py/Py) * and PVEV - const. 6), (7)
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Fig. 1. Dependence of adiabatic volumetric and temperature indices
Ky{@ and » (b) on the pressure. Pgayge, kgf/cm?.

We calculated the adiabatic volumetric and temperature indices for ammonia in the temperature
range t = 150-300°C and the pressure range Pgayge = 0-800 kgf/cm?® from the data of [2, 3] and Egs. (4)
and (5) and we constructed graphs of Ky and % as functions of the pressure (Iig. 1a and b). As seen from
Fig. 1a with an increase in pressure Ky increases sharply. This is connected with the fact that at high
pressures a gas approaches a liquid in properties (for a liquid Ky = 10%). The values of the adiabatic in-
dices obtained were used in calculations of the characteristics of ammonia jet devices operating with super-
critical parameters. Good convergence of the theoretical characteristics with the experimental data was
obtained in this case.
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CALCULATION OF TWO-DIMENSIONAL FLOWIN A
NOZZLE OF A GAS CONTAINING PARTICLES

N. V. Pashatskii UDC 532.529.5

The case of the two~-dimensional flow of an incompressible gas containing solid particles is examined
in the report. It is assumed that the projections of the velocities u and ug of the gas and the particles on the
nozzle axis, the gas pressure p, and the density pg of the solid phase depend only on the coordinate x.

Neglecting the force effect of the particles on the gas in the direction of the y axis and expressing the
projections u and v of the gas velocity through the stream function ¥, we can write the equation of motion
of the gaseous phase for the y axis [1] in the following form:

A S
ay  ox* | ox  Oxdy

BSY)

Equation (1) is solved with the following boundary conditions. The nozzle axis (the x axis) is simul-
taneously a streamline. The curve L(x) of the nozzle profile is also a streamline.

The volumetric flow rate of the gas through the initial cross section of the nozzle (x = 0) is constant
and equal to V.
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J ' Setting ¥ (x, y) = XY, where X is a function only of x
and Y is a function only of y, we find the general solution
————— of Eq. (1):

¥ (x, y) = (Ay + B)exp Cx.

The particular solution with allowance for the bound-
ary conditions has the form

¥
‘{’:VT. 2)

The expression (2) satisfies Eq. (1) if the nozzle
profile L{x) is described by the equation L =a expthx),
0 3 2 s * where a and b are constants.
Fig. 1. Streamlines of gas and trajectories
of motion of sclid particles: 1) particles 2
i in diameter; dot~-dashed line — 10 u.

Calculations showed that Eq. (1) with the substitu-
tion of (2) is satisfied with sufficient accuracy for nozzles
with different variable radii of curvature.

The projections of the velocities ug and vg of the solid particles and the trajectories of their motion
are found by a method developed in [2].

As an example, we will examine in the report the motion of an air—solid particle mixture (diameter
of particles 2 and 10 u) in a flat nozzle with a profile L = cos {r/4)x+2.

Initial data: size of exit cross section of nozzle 2.5 mm, velocities of gas and particles at enfrance-
equal 25 m/sec, density of particle material 3600 kg/m®.

The results of the calculation of the streamlines of the gas and the trajectories of the particles are
shown in Fig. 1. The particles 10 p in diameter are entrained by the gas considerably less strongly than
- the particles 2 p in diameter.
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PLASMA ACCELERATOR WITH AN APPLIED MAGNETIC
FIELD OF AN INDUCTIVE STORAGE

V. M. Gurov UDC 538.323.533.9

The basic characteristics of the acceleration process in the case of the application of the magnetic
field of an inductive energy starage (IES) to the discharge chamber of the accelerator are analyzed in the
report on the assumption that the IES magnetic field is concentrated in the volume of the storage, is uni-
form over the discharge chamber, and the intensity vector of this field is perpendicular to the velocity
vector of the plasma. '

The basic equations describing the plasma acceleration and the transitional processes in the accele-
rator circuit, on the assumption of an exponential law of variation of the current during the IES discharge,
have the following dimensionless form:

d%,

e = W5 200 1eXP (=) + ya), (1)
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dys 1
dt 1ty

[(r—42) exp (—7) — Y3 (P-1-¥9) — Yol (2

The system of Eqs. (1), (2) was solved numerically with variation of the parameters entering into it
and with the initial conditions y, = y, = y3 = 0 at 7=0.

It was established through a study of the equations that an increase in the fraction of inductive accele-
ration leads fo intensification of the process of energy transfer from the storage to the kinetic energy of the
cluster, although the maximum velocities attained by the plasma in the course of time are the same.

The decrease in the level of the discharge current with an increase in the contribution of the induc-
tive acceleration in comparison with accelerators without an applied magnetic field, which leads to a de-
crease in the erosion of the electrodes, is important.

It is established that a change to a superconducting IES does not lead to a significant increase in the
efficiency of the acceleration process, which speaks in favor of digsipative storage devices.

NOTATION

Yi» 2> Y3 and 7 are the dimensionless path travelled by the accelerating plasma, its dimensionless

. © velocity, the dimensionless discharge current, and the dimensionless time, respectively;
is the energetic parameter; :
are the dimengionless parameters of discharge circuit [1};
is the parameter characterizing the effect of the inductive coupling on the process of
electrodynamic acceleration of the plasma.

< R D
=]
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STABILITY OF FLOW OF A LIQUID LAYER OVER THE
SURFACE OF A VERTICAL CYLINDER

N. V. Zavarzin and V. M. Suyazov UDC 532.135

In connection with the wide application of film modes of flow in many technological processes of the
chemical industry and thermal-power engineering it is interesting to study their hydrodynamic stability.

The stability of flow of a layer of liquid of Grad's model, which describes suspensions of low concen-
tration, over the surface of a vertical cylinder in a gravitational field is analyzed in the article. The solu-
tion is by the method of successive approximations, where the wave number of the disturbances (small
longwave disturbances of the toroidal type were analyzed) was used as the minor parameter. Itis shown that
with an increase in the thickness of the descending film the flow over the inner and outer surfaces of a
cylinder becomes unstable. For a given mode of flow there exists a certain characteristic Reynolds num-
ber Re® such that for Re < Re’ the flow over the inner surface of the cylinder is more unstable than that
over the outer surface. For Re > Re’ the opposite picture is observed.

It ig established that both flows become stable with an increase in the surface tension, whereas
allowance for the rotation of particles of the suspension leads to destabilization of streams over a cylin-
der.

The axial asymmetry of the stress tensor for a Grad liquid does not affect the velocity of propagation
of waves over the surface of a descending layer. Just as for a Newtonian liquid the velocity of wave
propagation over the outer surface of the cylinder is greater than over the inner surface.

Dep. 2908-74, September 12, 1974.
Original article submitted March 16, 1973.
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DEVELOPMENT OF GRADIENT FLOW OF A CONTINUOUS
MEDIUM WITH A RHEOLOGICAL POWER LAW AND A
CRITICAL SHEAR STRESS IN A ROUND TUBE

L. A. Luneva, A. M. Makarov, UDC 532.54;53{2.135
and V. G. Sal'nikov

The direct and inverse problems of the development from a state of rest of the one~dimensional flow
of a continuoug medium with a Herschel —~Bulkley rheological equation in a cylindrical tube of constant
diameter under the effect of a pressure gradient which varies with time are analyzed below in a continua-
tion of [1].

A continuous medium of density p with a rheological equation in the form
~1 n—l) ou

,
T= (\ﬂ,

Ou du )
— —_— i >T,
Fw Ew Py or {tj>1; (1)

(7 is the tangential shear stress, 7; is the critical tangential shear stress, u is the velocity of the medium,
and ky, is the rheological constant) fills a cylindrical tube of radiusa (0 = x = g} and at the time t = 0 ig
set into motion from a state of rest under the effect of a pressure gradient P(t} which varies with time.

in]

In the case under consideration the equation has the form

du 1 a
P =T E(r.\t)—P(t). {2)
Simple operations lead to the problem describing the flow of a continuous medium in the plastic zone

in dimensionless variables:

EINTUTEE L R o
T(x. ) lmay =0 - {4)

)1,_' ’ _5_(%;3_)); e=Al is(f) ’ (5)
4 2] g0, (6)
At o = L. (7

For the "direct problem" the function ¢(t) is assumed to be known while T(x, t) and A{t) are unknown;
for the "inverse problem™ the function A() is assumed to be known while T (x, t} and ¢(t) are unknown. A ()
is the boundary of separation of the zones of viscous flow and of a quasisolid core.

By integration of Eq. (3) over the spatial coordinate using the rheological law and the corresponding
boundary conditions one obtaing a system of integro-differential equations whose solution is constructed
by the method of successive approximations.

LITERATURE CITED
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VISCOSITY OF DIBUTYLPHTHALATE AT HIGH PRESSURES
AND DIFFERENT TEMPERATURES

N. A. Agaev and A. D. Yusibova . ~ UDC 532.13:547.37.043

The esters of phthalic acid, whose thermophysical properties have not been studied, find extensive
application as plasticizers and as the working fluids of hydraulic machines and mechanisms. Only data on
the viscosity and density at atmospheric pressure are presented in [1], and in a limited temperature range
at that.

The results of an experimental study of the viscosity of dibutylphthalate performed in the tempe rature
interval of 20-350°C and at a pressure of from 1 to 700 kgf/cm? are presented in the article.

The viscosity was measured by the capillary method. A dlagram of the experimental apparatus, the
construction of the viscosimeter, the method of conducting the experlmen’cs and the calculation of the vis-
cosity are described in detall in [2-3].

Two viscosimeters were used in the experiments: the first in the température interval of 20-100°C
and the second in the interval of 100-350°C. The matchup at the 100° isotherm showed agreement within the
limits of 0.2%.

The. absolute tenﬁperature for the experiments was measured by a standard platinum resistance ther-
mometer with an accuracy of 0.02°C, and a constant experimental temperature was maintained within
limits of %0.005°C.

The pressure was created and measured with a load-piston MP-600 manometer of class 0.05.

The outflow time was measured automatically by an electrical timer with an accuracy of 0.1 sec.
The measurements were made with respect to isotherms; 15 isotherms were taken.

The measurements were made twice at each point, with the reproducibility of the experiments not ex-
ceeding 0.2 %.

The step of the pressure variation on the isotherms was 50-100 kgf/cm?. The maximum pressure on

the isotherms was 700 kgf/cmz. The purity of the dimethylphthalate studied is characterized by the grade
cp.

02 16°

16

(°C).

200
11 kgf/cm2

L2 \ .
- Fig. 1. Viscosity of dibutylphtha-
0 v late (N* sec/m?) at constant pres-
o0 sures as a function of temperature
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The experimental error of estimated to be a value on the order of +1.0-1.5 %.
Smoothed valges of the viscosity are presented in Table 1 and illustrated in Fig. 1.

The data obtained agree well, within the limits 6f 1-2%, with the literature data [1].
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CALCULATION OF THE PROCESS OF DUST COLLECTION
INCLOTH FILTERS

V. A. Uspenskii, G. L. Sitnitskii, UDC 621.928.94/96
and R. G. Adamov

A mathematical description of the process of dust collection in a cloth filter is proposed in the article.
The nonsteady nature of the process of filtration of a dust—gas mixture, caused by the variation in the
porosity of the filter and in its thickness due to the accumulation on the filter baffle plate of a deposit of
filtered dust particles, is taken into account in the description.

The ,déposit of dust takes place both within pores of the cloth and on its surface. The presence of
" intracloth and above-cloth dust layers, forming a so-called self-filter, leads to a high efficiency of dust
collection.

It is assumed that during the regeneration of the filter, accomplished through an increase in its aero—
dynamic resistance to a certain value, only the above-cloth dust layer is completely removed. The re-
moval of dust from within the cloth is hindered because of the high sinuosgity of its pores.

The dust retention is determined by two oppositely acting factors: the deposit of dust particles on the
porous baffle and their blowing off due to the aerodynamic action of the gas stream. The dust balance in
the elementary above-cloth dust layer with allowance for the mechanism of dust retention leads to a system
of nonlinear differential equations containing partial derivatives:

d 1 w
o —m
| ?t_ =a [WC (1—m) —bppW2 o ] .

The direction of the coordinate axis y in-this case coincides with the direction of the filtration velocity
W, while the point of origin for the measurement of y lies at the boundary between the cloth and the above-
cloth dust layer. '

There is a system of equations similar to (1) for the intracloth dust layer, with m being replaced by
mmg and b by bg. By the introduction of a ceriain average effective porosity m, each of these systems is
reduced to one linear first-order differential equation of the form

ac oc

3y =_mla‘— 2

,ml

—aW (1-—m,) (C — M) . 2)

The solution of (2) is found by the method of characteristics, where the additional condition for the
first case is the condition of constancy of the dust concentration in the gas ahead of the filter, while in the
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second case the additional condition is the solution of (2) at y = 0. The final expression for the average
over the interregeneration time period of the dust concentration C,y in the gas behind the filter has the
form .

bop W
C‘avz—p_p{‘{—i"i‘(l_ mg2 )exp[—a(lj—ml)ﬁ]}

C

ny ) exp [ _ a.(l _m1)5+a ,_C_OTEC_] [l—exp <__ m\i]

aCoWty, pam,y mioy )

The functions obtained are confirmed experimentally (Fig. 1).

NOTATION
C is the dust concentration in gas, kg/m®;
m, me are the porosities of dust layer and of cloth, respectively;
t is the filtering time, sec;
o, op are the density of dust deposit and of material of dust particles, respectively, kgf/ms;
g is the coefficient of adhesion of dust to filtering material; '
a, b are the proportionality factors, 1/m, sec/m;
Cy is the dust concentration in gas ahead of filter, kg/m’;
tr is the length of interregeneration period, sec;
8 is the thickness of dust layer within cloth, m.

Dep. 2898-74, September 12, 1974.
Original article submitted Mareh 25, 1974.

AN APPROXIMATE MEANS OF SOLVING HYDRO-AEROMECHANICS
PROBLEMS BY THE ELECTROHYDRODYNAMIC ANALOGY
(EHDA) METHOD

V. P. Tolmachev UDC 533.6.011+532.546.013.3

Electromodeling is presently obtaining ever wider distribution as a method of solving problems
from different fields of engineering. One of the important trendg in the development of electromodeling is
the expansion of the class of problems solvable on a specific electromodeling device.

In the present report we shall consider a means of electromodeling of hydro-aeromechanics prob-~
lems by the EBDA method using the representation of the unknown functions in the form of harmonics,
which allows one to use the technique of electromodeling of the Laplace equation.
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We represent the continuity equation for an established axisymmetric stream of liquid (gas) in a natu~
ral orthogonal coordinate system consisting of the distance s along the streamlines and the distance n along
the normal to them:.

08 dlnpwy

= e (1)
where 0 is the angle between the stream lines and the axis of symmetry; w is the total stream velocity; o is
the density; y is the Cartesian coordinate perpendicular to the axis of symmetry. Since Eq. (1) corresponds
in the form of notation to one of the Cauchy— Riemann conditions for the functions # and In o wy we assume
that the second Cauchy— Riemann condition is also satisfied:

dIn pwy © 00

am 3 2)

Consequently, the functions 6 and In pwy satisfy the Laplace equation and the electromodeling technique can
be used with respect to them. The solution of the Laplace equation for 6 allows one to find the geometry of
the streamlines of the flow and the configuration of the boundaries (free surfaces, shock waves, etc.), while
with the help of the solution of the Laplace equation for In pwy we can find the distribution of the dynamic
characteristics in the region studied.

To take into account the physical properties of a specific stream one uses a correction to the dis-
tribution function In pwy, determined by the difference between Eq. (2) and the equation of the momentum
in the projection on the normal to the streamline, which are separated relative to the derivative dp/on,
where p is the pressure.

Dep. 2897-74, September 12, 1974.
Original article submitted January 23, 1974.

EFFECT OF THE MOLECULAR WEIGHT ON THE STRUCTURE
AND THE.RMOPHYSICAL PROPERTIES OF POLYETHYLENE

V. P. Dushchenko, V. N. Smola, UDC 678.742:536+539.1
E. V. Grishchenko, I. M. Kucheruk,
V. M. Baranovskii, and N, E. Menyailov

Polymers usually consist of a mixture of macromolecules of different sizes which is characterized
by the average molecular weight (MW). Such a heterogeneity essentially determines many properties of
polym ers, particularly the thermophysical properties.

The purpose of the work is a study of the effect of the MW on the variation of such parameters of the
crystalline structure as the degree of crystallinity », the sizes L of the crystallites, and the thermophysical
properties (specific heat capacity Cp, thermal conductivity coefficient A) of low-pressure polyethylene
(LPPE) with an MW of from 10,000 to 106,000.

A calorimetric study showed that in the vitreous state the passage below the glass-transition tempe rature
(T,), caused by the hindered motion of sectiong of the macromolecule chain containing four successive CH,
groups about the collinear bonds, is observed at 153°K for all MW. In the temperature interval of devitri-
fication both an increase in Tg (which almost ceases at MW = 100,000) and an increase in the jump 'ACp in
the specific heat capacity occur with an increase in.the MW . The specific heat capacity Cp decreases with
an increase in the MW . Calculations based on the hole theory by B. Wunderlich's method [1] for amor-
phous polyethylene lead to values of ACp on the order of 11.3 J/mole * °K, whereas for our specimens the
experimental values lie in the range of 0.6-1.1 J/mole °K. Thus, it becomes clear that a considerable
amount of the amorphous phase of LPPE exists in a "bound" state (through sections, sites of bends in the
macromolecules between crystallites). The increases in the dengity of the amorphous phase of LPPE
(Table 1) with an increase in the MW is a confirmation of this. The latter fact, despite the decrease in x
with an increase in MW (Table 1), leads to a decrease in the values of Cp The specific heat capacity of
LPPE with different MW at T = 300°K was also obtained through calculation using V. V. Tarasov's theory
of heat capacity [2]. Good correspondence is observed between the calculated and experimental values of
Cp-
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TABLE 1. Degree of Crystallinity », Transverse (Ly,,) and Longi~
- tudinal (Lgy,) Dimensions of Crystallites, Density pa of Amorphous
Phase, Specific Heat Capacity Cp, and Coefficient A ag Functions of

the MW

MW . 103 10000 | 24500 42000 52000 » 62000 76000 99000 106000
x, % 62,5168,6| 73,4 | 72,5 | 72,5 | 64,7 | 47,0 | 50,0
Lye A 85,0 97,41 252,0 | 90,0 | 8,5 | 64,7 | 53,9 | 467
Logs, A 43,9 82,5 1425 | 172,4 | 190,0 | 198,0 | 201,06 | 212,4
pa, kg/m® 803 | 805 | 806 808 809 811 814 816
Cp, qu 1990 | 1843 | 1795 1730 | 1719 1690 | 1665 | 1654

g .
A,W/m-°K 0,510,491 0,46 0,46 0,45 0,43 0,39 0,39

The variations in ® and in the dimensions of the crystallites determine the value of A for the speci-
mens studied. Actually, since a crystal has smaller phonon-scattering centers than an amorphous poly-
mer, the value of A will decrease with a decrease in the degree of crystallinity and the dimensiong of the
crystallites. Consequently, the decrease in A with an increase in the MW as a result of the decrease in®
and in the crystallite dimension Ly, which is observed in these studies is weakened due to the increase in
Ly, and in the density of the amorphous phase of LPPE.
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SOME PHYSICAL PROPERTIES OF FIBROUS TUNGSTEN

D. M. Karpinos, V. 8. Klimenko, UDC 536.21:537.311.33:621.763:669.277
Yu. V. Kondrat'ev, G. A. Duzhanskii,

A. E. Rutkovskii, I. K. Senchenkov,

and L. L, Sukhikh

Gas-permeable fibrous tungsten is a heat-resisting material suitable for use in various novel tech-
niques, especially at very high temperatures with transpiration cooling.

Results are given on some thermophysical and mechanical properties, and also the permeability of
porous (25% porosity) tungsten with an oriented fibrous structure made from tungsten fibers of diameter
25-30 ym.

The strength of this 25% porosity tungsten exceeds the strength of various forms of compact tungsten
at all temperatures between room values and 2800°K, being only slightly inferior to the rhenium-alloyed
compact and rolled tungsten.

The thermal conductivity and resistivity were determined by Kohlrausch's static method between room
temperature and 1300°K at pressures below 10~? mm Hg; the coefficient of variation for the thermal con-
ductivity was 5-7%,and for the resistivity, 1.2-1.8 %.

TABLE 1
°K 473 } 673 ’ 873 [ 1073 1273 ’ 1473
TEC -10% deg-! 3,86 ’ 4,05 l 4,24 ' 4,35 4,38 ‘ 4,42
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Fig. 1. Thermal conductivity and elec-
trical conductivity as functions of tem-
perature: 1) thermal conductivity of
fibrous tungsten converted to the pore-
free state; 2 and 3) thermal conductivity
of compact tungsten (handbook); 4 and 5)
thermal conductivity and eléctrical re-

Figure 1 shows the thermal conductivity and resistiv-
ity of fibrous tungsten as functions of temperature; it also
shows data from reference works for compact deformed
tungsten.

The conductivity characteristics of fibrous tungsten
are poorer than those of the compact material on account of
the reduced effective cross section, as well as contact re-
sistance. On the other hand, there is satisfactory agree- -
ment between the thermal conductivity as calculated back to
the pore-free state and the results for compact tungsten,
which shows that the second factor is unimportant, i.e,,
there is good contact between the fibers in the material,
is satisfactory agreement between the thermal conductivity
as calculated back to the pore-free state and the results for
compact tungsten, which shows that the second factor is un-
important, i.e., there is good contact between the fibers in
the material. :

sistance of fibrous tungsten (measured
value); 6) resistance of compact tungsten
(A in W/m -deg, o in 2 +m, and T in °K).

The thermal-expansion coefficient (TEC) was mea-
sured as a function of temperature with a Chevenart quartz
dilatometer for the range 300-1500°K in argon; the coeffi-
cient of variation did not exceed 1,5%. The temperature dependence of the coefficient increases monotoni-
cally in this range. Table 1 gives the mean values averaged over five specimens.

The permeability was measured from the flow rate of gas through a flat specimen at pressure dif-
ferences up to 30 atm, and it indicated that the flow was nearly laminar, the permesability coefficient being
0.5-1,5 +10~% em? for porosities of 10-35%.

Dep. 2909-74, September 12, 1974.
Original article submitted July 28, 1969.

THERM.AL CONDUCTIVITY OF POTASSIUM CARBONATE

V. Ya. Chekhovskii and G. I. Stavrovskii UDC 536.2

" The thermal conductivity of potassium carbonate K,CO, has been measured at 250-700°C; a static
method was used with a radial heat flux in argon at 1.2 atm, this gas filling the sealed equipment after re-
moval of the air. The specimens were weighed from the white anhydrous crystalline powder of chemically
pure grade as follows: the powder of particle size less than 0.5 mm was dried in a desiccator at 160°C for
1 h and then pressed in a mold at 1 t/em?, Potassium carbonate loses its absorbed water and water of
crystallization above 152°C, and gives the anhydrous salt. This is hygroscopic, so the prepared specimens
are stored in a desiccator and removed directly before insertion in the apparatus. The density after the
experiment was 1.600 g/cm?, which goes with the density of pore-free potassium carbonate, 2.418 g/cm?, to
define the true porosity as 34 %.

The results may be approximated via the following formula with the temperature in °K;
i==(0,326+0,00479 7)~' W -m~!-deg™

The 0.95 confidence range in relative terms for results from this formula is 5-10%;similarly, the con-
fidence range at the 0.95 level for the systematic error is £6 .

The following are recommended values of the thermal conductivity calculated from this formula:

T, °K 500 600 700 800 900 1000
W .
A, i+ deg 0.367 . 0.312 0.271 0.240 0.215 0.195

Dep. 2901-74, May 6, 1974.
Original article submitted July 5, 1973.
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ESTIMATION OF THE ERROR DUE TO THE TWO-DIMENSIONAL
TEMPERATURE DISTRIBUTION IN THE MEASUREMENT OF':I‘HE
THERMAL CONDUCTIVITY OF A FILM

V. A. Arutyunov, L. Ya. Lyubin, UDC 536.21
and M. N. Pivovarov

The temperature distribution in an orthotropic disk is discussed; the initial equation is

o7 19 oT
?vz 32 + r . * ar (7’ ar )—— 0. (1)
The boundary conditions (h = ay/A,) are
T=T, at 2=0,T=T, at 2=8, 37;0r =h{T{—T) at 7="rq. 2)
If the recording instrument registers the heat flux through a circular spot of radius r; at z = §, we have
{I‘l = I‘O; R0 = ro/a; R1 = I‘i/ﬁ) that
Aar _ _4nd (_7”’_)3/2 % cth pn CJ1lun VA Ry)
by RRy \ e ) sty b (R8P e o (un VAR, 3)

n=1
tndy (o VAR, Ro) = B8 V Xefhz Ty (i V3737 Ry).

The narrow-band asymptotic method can be used for VA,/X r, » 1 to obtain a more convenient expresswn
for estimating the error; (1) becomes

r F4

2T e 3/ ar)

N A @
As & = §/ry< 1, the problem is a singularly perturbed one; to solve it one needs not only the external
asymptotic expansion [the solution to (4): T = T(®) + eT(+,..] but also the internal one t = t(0 + et(s
which is a solution to the equation

o o

A% ——— L
ogz om

+e(ltend... ~—~—-=O, M = {ro —r}/6. ’ (5)
These expansions must satisfy the conditions

=Ty at ¢=0,T=T, at g=1,
dm=hr{t—Ty) at =0, (TO L eTOHL.),, ~ (O + efD4)p o

The first terms in the expansions (T(O), t(°)) are used to estimate the error of measurement for the
transverse thermal conductivity with the recorder placed above and below; for £ = 1 we have

Ahy 4o 82 i exp (~— ns Vi /A ny)

- n{n -+ ard/n ¥ Ay

= 3 Adg=shge—ds, my=(rg—ry)/5.
Ay %o )

n==]

If ry = r; and opb ~ ™WALA, we have

Ad, 20,02 Ah, 1 o,0?
e Cog=1, =—— .

Ay 3 Aro

Az Brghs

if rg-ri\\ 6\f}\r/hz, then AN, < 40,6 2/ (x? 1y); for instance, for (ry—r)d = 0.22 XV 7 zwe have A, &0, 236
Ozfra /f()

NOTATION

T ig the temperature;
0.and r; are the thickness and radius of disk;
My and Ap  are the transverse and longitudinal thermal conductivities;

Ygp are the recorded transverse thermal conductivity;
. is the effective radiative-transfer factor.
Dep. 2904-74, November 12, 1974, _
Original article submitted December 30, 1973.
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THERMAL STRESS BUILDUP IN SOLID-STATE
LASER ELEMENTS

G.I. Zheltov and G. G. Meshkov UDC 621.378.32

A solid-state laser working in the continuous-wave regime for high-frequency pulsed state responds
to any change in the mean pumping power with temperature changes in the rod, and hence in the internal
thermal stresses, which influence the optical parameters of the material and hence the stabilify of the
spatial and other characteristics of the output.

The thermal-stress buildup has been calculated for a cylindrical rod; the quasistatic theory of ther-
moelagticity is applied in the homogeneous approximation for heat release in the rod. The results are
presented as tables and graphs, Whlch allow one to perform engineering estimates of the thermal stresses
as functions of time.

Measurements have also been made on the thermal-stress buildup in glass and ruby rods; the thermal
stresses were determined from the induced optical anisotropy.

The measurements are compared with calculations, and it is found that the error in the calculations
does not exceed 15% at heating levels more than 0.5 of the maximum.

Dep. 2895-74, September 20, 1974.
Original article submitted May 29, 1974.

. CALCULATION OF ADIABATIC PROCESSES FOR
N,0, = 2NO, =2NO + O, GAS MIXTURES

G. M. Novik and B. I. Lomashev UDC 534.174

A method is given for calculating nonequilibrium flows of a dissociating mixture of gases in channels
of variable cross section; it uses the adiabatic parameters with the usual assumptions of gasdynamics.

The method is as follows:

1. An integral form is given for the adiabatic equations, and this is used with Bernoulli's equation

for the flow and the equation of continuity to get
Ky Kp—1

CnSn 2 2gKp Ton \Ky K1

7 T == P V. —_— p T

[s,.ﬂ(._&.) Y } B
Tha Ky—1

Conditions are imposed in the steps in the longitudinal coordinate, Which gives the temperatures Ty , 4 at
section n + 1 in the channel.

2. From Ty 1 the value of the pressure Pn+ 1 is found from the adiabatic equation.

3. The component concentrations at section n + 1 are found from equations obtained by direct integra-
tion of the differential equations for the reaction kinetics.

4. The known values for Ty 4, Py 44, and the component concentrations are used with the appropriate
equations to find the volume V., and gas feed C ; ;-

5. The nonequilibrium adiabatic parameters required to calculate the flow at the next si:ep are found
from equations derived from the internal-energy equation, the adiabatic equation, and the equation of state
for the gases:

1+ oy + ogd, + faV ( Acz,) faV ( Aa2>

fl fT \ AV HT \ AV @)

Kp=1+
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t+a)T p Ay

Al = et T &P ‘
_ fs+ o, T _P_ Aay l+a1+a1a2 . (8
fot 140y 4o, T AP fA 1ot
Kv""‘l
Ko =Ko 1 4)

where o4 and o, are the degrees of dissociation in the first and second stages of the reaction, with f,, £,
and f, the composgition function and the characteristic vibrational frequencies of the components.

The method has been used in an algorithm for calculating gas-mixture flows in such channels with a
Mingk-22 computer; the run time is short for Mach numbers of 1; and the resuits are of high accuracy, so
it is assumed that this scheme can be used in design calculations for particular gas mixfures and systems.

Dep. 2906-74, September 25, 1974.
Original article submitted March 28, 1974.

SIMULATION OF NONSTATIONARY THERMAL CONDUCTION
WITH NONLINEAR OUTPUT FROM INTERNAL SOURCES

A. V. Archakov and L. I. Gutenmakher UDC 536.24.02

When the nonlinear equation for nongtationary thermal conduction is handled with network models, it
is necessary to supply the nonlinear current Iy (Up,) to the nodes, where U, is the potential at node m, and
w is the subscript indicating that this simulates the nonlinear power oufput from infernal sources.

To avoid laborious iterative methods of specifying IW(Um) it is suggested that one should simulate a
nonlinear drain by means of a current generator with a controlled internal resistance R;; when certain
conditions are met, the corregponding current is given by

w = V/Ri.' (l)

where V is the potential external to the RC network, which considerably exceeds the voltage at the nodal
point. Then Rj(Uy,) can be varied in accordance with (1} by applying an arbitrary control law Iy.

This controlled resistance RB; has been realized via a circuit in which each capacitor in the network
is periodically connected to resistors Ry and R via 2 high~frequency electronic switch, which are such that
the effective resistance ig a function of time:

(R v—Det<(v—1)0--1;

R(t) =
“ (lRo» V=104 vt < v8; (2)

ve=1,2 3, ...,
where t is current time and ® is the switching period, whose length is much less than the solution time for
the RC model; 7€ [0, ®].

The transient response for circuits of this type indicates that in this case the equivalent controlled
circuit regsistance (which is also the internal resistance R; of the current source) becomes a function of the
interval 7:

O6RR,
OR —T(R—R,)

Ri= 3)

The interval 7 is produced by 2 pulse-width modulator, whicﬁ controls Uy, and then from (1) and (3)
the current supplied to the node becomes a function of Uy,.

The maximum error in defining the nonlinear drain I (U,,) is given by
6(R—Ry)
amax = 4RR,C » (4)

where C is the capacitance at the node.
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The error was not more than 0.5 % under the conditions of the experiment; the principle is also suitable
for realizing a nonlinear thermal conductivity and nonlinear boundary conditions of types II, III, and IV.

Dep. 2899-74, April 16 1974.
Original article submitted Qctober 9, 1973

VARIATIONAL DERIVATION OF THE THERMAL-DIFFUSION
EQUATIONS FOR THIN PLATES AND SHELLS

R. N. Shvets and M. S. Ravrik UDC 539.377

The variational principle has been used to write a system of differential equations for the mean tem-
perature t and solute concentration c:

h? d . .
#2ATy — b, Ty — b, T, — 'T . 67 Ty +ve6) =— (b1t10 -+ bztg),

o
BT, —3(1+b) Ty — 3Ty ——— - —— Tyt 7 =—3 (bof? + B115),

-2 oc

h2Ac, + K2doATy — &y (doT'y + €1) — &5 (doT2 + €2) — D, ‘GTI
ol

h?  dc,

B2Acy+Hh2dg AT ;— 3 (1-e;)(doT 3 H00) — &g (doTy+er)— . ot =

1
= de,T (sll"f'i‘szp';)v
(4
3 ¢ c
i (S S (1)

and the corresponding boundary conditions at the ends:
VTt + he(Ty—TD =0,  iTyns+ by (Ty— T3) =0,
vt (DT + Docy) ma + H (@5°Ty + 5 Ty — pD) =0, (2)
V! DTy + Do) my - H @5y + 8 Tey— 1) = 0,

which are Euler—Ostrogradsky equations for the variational problem I = 0 on the assumption that the tem-
perature and concentration are linearly distributed over the thickness of the shell, via which heat and mass
transfer occur in accordance with Newton's law. Here

h - h — H
b= 5 (G £ ) ee = HF £ HD): Hi=

1 _ 1 ~
o= 0F =17 pio= 5 (F =10

Cdyt agt 1ra /(B oy @& (A 23\

o= g Tw b= er’ A= A—B[—GI(_A— ' E)Jr Fﬁ—(? ’ 5?)]
with C®:C the specific heat at constant volume and concentration; d%:, d® T are coefficients representing
the variation in the chemical potentials of the particles in response” to the concentration and temperature
respectively; TO is absolute temperature; L is a coefficient representing the abormc mobility of the diffus-
ing material; h tHl are the relative heat- and mass~transfer coefficients; t* ¢’ “c are the temperatures
and chemical potent1als of the diffusing material in the medium around the surfaces at z = +h; Dy and D
are diffusion coefficients; a is the thermal diffusivity; n; is the vector of the exte rnal normal to the shell
surface; V1 Vi are symbols for the contravariant and covariant differentiation with respect to the coordi-
nates o and B; T'i) T%’ and u?,ulzo are the mean temperatures and chemical potentials at the ends; A and B
are the coefficients in the first quadratic form for the median surface of the shell; and Tis time.

Similarly, coupled equations are derived for the mean values of Ty, T, py, and p,, in particular when
the definitive parameters are the temperature t and chemical potential u. This system can be derived
from (1) via the equations of state

b= AT b ATy, = d0Te - 5T, @)
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An example handled via (1) is the solute concentration redistribution on account of uneven heating in
an infinite plate with a circular hole of radius R, the material being a two-component solution of concen-
tration ¢;. Heat and mass transfer to the environment occur through the surface of the plate, the tempera-
ture and chemical potential of the environment remaining congtant. Particular cases are discussed.

Dep. 2894-74, September 30, 1974.
Original article submitted June 14, 1973.

COORDINATE DEPENDENCE OF THE HEAT-TRANSFER
COEFFICIENT FOR A THIN SEMI-INFINITE ROD

Yu. I. Babenko UDC 536.24.01

The problem of heat transfer in a uniformly cooled thin semi-infinite rod initially at absolute-zero
temperature is discussed:

—g—-__-g:—A_-y(x)]T:_—O, 0Lx <, Dali<m,
ot oxr N

oT | . ) o _
TIx:O = Te(t); —67-;,;:0: 20 (); T]x=oo =10; TY o = 0 (1)

(T is the temperature, x is the coordinate, t is the time, and v is the heat-transfer function). It is required
to determine y(x) with the use of an "excess" boundary condition. The author has prevmusly obtained a
relationship between T, q4, and v as a series in fractional-order derivatives: :

20 (0) (0) O =) pose

=Dl —1/2 1 Tot... ‘
go=2D To+ D™V Ty + DT, + 3 ot @)
If T; and q, are specified in the series form
o . o
Ty = Z apt™?, gy = 2 bpt"D2 g by — const, @)

n=0 n=0

then by the substitution of (3) into (2) and equating of the coefficients of like powers of t it is possible to de-
termine successively all the derivatives y2(0) = (any/ax“)xz(, and so the function y(x) itself in the form of a
Taylor series in powers of x. '

Dep. 2893-74, August 8, 1974.
Original article submitted May 29, 1974.
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